Understanding and comparing learned features in CLIP models via Sparse
Autoencoders

Franklin Zhu
Stanford University
fzhu22@stanford.edu

Abstract

Vision models learn complex semantic relationships
within their training data, but it is not well-understood what
concepts those models contain, nor how architectural dif-
ferences influence the concepts a model can learn. In this
work, we train Sparse Autoencoders (SAEs) on a ResNet
and a Vision Transformer which have been pretrained sim-
ilarly and experiment with training methods, in service of a
comparative analysis of human-interpretable concepts con-
tained in similar visual networks with different architec-
tures (CLIP-ResNet50 and CLIP-ViT-L/14). We experiment
extensively and use quantitative and qualitative metrics to
compare the two autoencoders; ultimately, despite poor
performance in our ResNet SAE when we train it similarly
to the ViT, we nonetheless find some nontrivial instances
of feature alignment, indicating positive potential for future
research in the area.

1. Introduction and Related Work

Deep neural networks exhibit exceptional performance
across many domains, but their internal representations (e.g.
activations in latent layers) are in many cases opaque. To
explain this phenomenon, previous work such as [9]] has in-
troduced the so-called "superposition hypothesis”, in brief
that models want to learn more features than they have
dimensions to represent, so they pack these features in
”almost-orthogonal” directions in their high-dimensional
latents. Thus, while individual dimensions in the latent
spaces of a deep learning model may not be interpretable,
with the right techniques this *superposition’ of features can
be undone and understood.

To achieve this comprehension, it has been long under-
stood that sparsity aids in finding basis functions, enabling
the decomposition of the network into fundamental func-
tions or concepts [2]. In the modern day, one prominent
approach to achieve this decomposition has been the use of
Sparse Autoencoders (SAEs). Sparse Autoencoders were

Logan Graves
Stanford University

gravesl@stanford.edu

initially developed for use in language models [5] and in
part popularized by research done for language model inter-
pretability by the Anthropic team in [12]], [4]; in the past two
years they have continued to receive significant attention.
SAEs are autoencoders trained to reconstruct the latents of
another model, but with a much larger ("overcomplete”) la-
tent space of their own and a strong sparsity penalty. The
input to the SAE is the residual stream or part of the resid-
ual stream of another model, usually either the CLS token
in a ViT, or the output of a pooling layer in the ResNet;
the SAE expands it to the overcomplete dimensions, and
then attempts to reconstruct its inputs; thus, the outputs are
an attempt to reconstruct the other model’s residual activa-
tions. Intuitively, by incentivizing most dimensions in the
model to stay inactive, SAEs are more likely to learn to rep-
resent each superimposed feature in its own dimension, as
opposed to spreading them between dimensions, thus undo-
ing the superposition.

Though initially popularized in the context of language
model interpretability, SAEs have emerged as a powerful
tool for uncovering interpretable and efficient feature en-
codings in high-dimensional image data. As noted by [7],
which trained a nine-layer sparse autoencoder on a dataset
of 10 million 200x200-pixel images, even without labels,
the network was able to discover high-level concepts, such
as face and cat categories, from raw image data. This
work highlights how sparse autoencoders can extract se-
mantically meaningful features from very high dimensional
visual inputs. However, sparse autoencoders are particu-
larly useful to use with vision transformers. Though there
is relatively little research in this area, with the growth
of large models with high dimensional image embeddings
like OpenAI’s CLIP ViT models, this interpretability has
become increasingly important. In [6], it was shown that
sparse autoencoders trained on the vision transformer sub-
model in OpenAI’s CLIP[3] produce robust, highly human-
interpretable features. This research was extended in [1]],
which scaled the approach and used it to develop steer-
ing mechanisms. Here we take a similar approach but ex-
tend it towards the end of comparison, training SAEs both

on the vision transformer and the ResNet versions of the
CLIP model, and undertaking a comparative analysis of
their learned features. In this paper, we take a similar ap-
proach, exploring the use of SAEs to produce sparse, se-
mantically meaningful representations of the model’s resid-
ual stream.

2. Methods

Our aim with this project was to train two working
SAEs, one trained on CLIP-ResNet50 and one on CLIP-
ViT-Largel4, and then to conduct a comparative analysis of
the features learned from both.

2.1. SAE Architecture

In line with previous work[6], we set up an overcomplete
linear SAE with input and output dimensions d (for the ViT
CLIP, d = 768, and for ResNet50 CLIP d = 1024). Our
overcomplete latent layer expansion factor of 16 yields a
latent layer of dimension 16d.

The SAE architecture is very simple; much of the dif-
ficulty in training them is finding the right parameters and
implementing techniques to improve sparsity. Let x € R?
be the activations of the residual stream in the CLIP model.
The SAE first applies an encoder, which maps x to a latent
dimension:

h = ReLU(W.x + b)

with W, € R169%d and b € R%4, Next the SAE applies
the decoder and attempts to reconstruct x:

Xx=Wsh+c

with ¢ € R¢. This formalism maps onto the intuition given
above: the sparse autoencoder maps into a latent space
which expands out any superimposed features into their
own dimension, then the autoencoder reconstructs the input
to ensure that it is indeed generating faithful ’expansions’
of the activations that are fed to it.

We choose 16 for the expansion factor as opposed to 64
or 32 for multiple reasons. Previous work [6][12] discov-
ered so-called “ultra-low-density clusters” of SAE features
that fire extremely rarely, yet which make up a significant
proportion of model features. The author of [6]] described
achieving relatively similar performance in an SAE with an
expansion factor of 16 as opposed to 64, indicating to us
that 16 is empirically viable as an expansion factor, reduc-
ing training costs significantly without sacrificing signifi-
cant performance.

For loss we use MSE loss with strong L1 regularization,
and train using the Adam optimizer. Mathematically, we

have
m

1 i o (i
£= L3050 4 Al
=1

with m the batch size, 6 the parameters (including W, b, and
c). Empirically, effective parameters tend to hover around
a learning rate of 0.0004 and an L1 strength of 0.5; these
parameters were effective for both ViTs and SAEs.

2.2. Hook layers

In order to train SAEs, one must choose a specific part
of the model to *hook’, i.e. choose which activations, at
which layer, to feed into the SAEs. The choice of hook
layers is not straightforward, and involves multiple factors,
among them computational cost and susceptibility of rep-
resentations to SAE learning. In general, it is desirable to
choose layers that are later in the model, because in order to
learn abstract representations, the SAE needs to take in the
activations of a relatively abstract layer.

We chose the CLS token after the 1n_post layer at the
end of the CLIP model (768 dimensions). This is a suffi-
ciently abstract layer to have useful representations. In the
ResNet, we hook the output of the attn_pool (1024 di-
mensions); though it is of a slightly larger dimensionality
than the hooked layer in the ViT, they are close enough in
magnitude that it remains a natural comparison.

2.3. SAE Evaluation metrics

Once we trained our SAEs using Adam, we used a num-
ber of metrics to evaluate them. We of course care initially
about loss; if our model cannot competently reconstruct its
inputs, then its latent representations are not faithful, and
thus the features it learns do not matter to us.

In general, relatively sparse latent representations in the
SAE with few dead units tend to result in interpretable neu-
rons. Thus, assuming we have low loss, we evaluate SAE
performance using a number of metrics:

1. Population sparsity. Population sparsity is given by the
average number of active neurons for any given input,
which expressed mathematically is

n

%Z 1[ai(z) > €

i=1

where a;(x) is the activation of a neuron on an input
x and e is the threshold for the neuron to be consid-
ered active. We aim for a range between 5-25% spar-
sity; sparsity is an indicator, but not a perfect correlate
with interpretable features. (We easily trained mod-
els with very low sparsity, but typically trying to push
sparsity too low would simply result in a large fraction
of ’dead’ neurons.) We visualize population sparsity
with two different kinds of diagrams; see the results
section for examples. Also see section 4 (experiments)
for more information about how we induce sparsity,
covering techniques such as neuron reinitialization, as

well as more mundane methods like choosing the right
hyperparameters.

2. Identifying dead units. Sparse learning with L1 and
ReLU can cause some neurons in the latent layer to
’die’, i.e. fire very rarely or never; this is undesirable,
because it reduces the effective capacity of the SAE
since these neurons once ’dead’ will no longer update
their respective weights. We track dead units using a
histogram of activations, and quantify it using a thresh-
old value (e.g. if the total activation across the batch
is less than some threshold ¢, in this work 1le — 6, we
consider it to be dead; we can examine the histogram
of neuron sparsity to see the number of dead neurons.)

3. Qualitative human interpretability. Lastly, in addi-
tion to quantitative metrics we use qualitative obser-
vations to confirm that our sparse features are indeed
corresponding to some important concept. To evalu-
ate qualitative interpretability, we choose neurons ran-
domly from the latent layer, run a number of forward
passes, and visualize the images that have the strongest
activation for that neuron. A well-trained SAE will
have similar images in this visualization, e.g. ’im-
ages of cats’ or ’images of people working out’ or "im-
ages of animals eating other animals.” It is encour-
aging for the SAE to find features that directly corre-
spond to a class in the dataset — and indeed, those that
we trained frequently did — but far more interesting is
emergent understanding of ’concepts’ not accounted
for by the class outputs. As a simple example, our
best-performing ViT has an identifiable *weights’ fea-
ture that triggers on images of barbells and dumbbells,
when there is no general weights category in the train-
ing data, only separate classes for barbells and dumb-
bells.

2.4. Feature Comparisons

To measure the similarity of features learned in the ViT
SAE and the ResNet SAE, we use a number of metrics:

1. Average top-k image similarity. For each feature in the
SAEs, save the indices of the top k activating images
for those features. Then for each ResNet SAE fea-
ture, compute the average overlap each SAE feature
has with its most similar feature in the ViT. Since some
or many features may be dead, we may limit the num-
ber of features across which we compute the average.

2. Pairing. By pairing each ViT feature with a corre-
sponding ResNet feature based on the similarity of its
top-k images, we can create a list of possible ’same
feature’ relationships; then we can compute the per-
cent overlap between them.

3. Qualitative similarity. By looking at visualizations of
quantitatively similar features we can confirm or fal-
sify the notion that these features are indeed similar in
a human-interpretable way.

3. Dataset and Features

To train the SAE models, we used the ImageNet-1k
dataset from Hugging Face Hub, which has a training split
of around 1.28 million images. There are 1000 distinct
classes in this dataset and about 1300 images per class.
These classes cover a wide variety of natural and man-
made objects, like animals, vehicles, electronics, household
items, sporting equipment, etc. Due to computational and
some storage constraints, we decided to train our models on
up to four of the five total parts of the training split, with
each part containing around 256 thousand images, result-
ing in a total size of about 1.024 million images. Then, for
evaluative metrics, we used the validation split, consisting
of 50 thousand images. In the ImageNet-1k dataset, there is
no fixed image resolution and images come in a variety of
sizes and aspect ratios. Some examples of images and their
classes are shown below:

3.1. Preprocessing

To process this data for the OpenAl CLIP models, we
used the preprocess function given with the CLIP model.
This function resizes images to be 224x224 by first using
the bicubic interpolation method, which is a resizing tech-
nique that produces smoother results than simpler methods,
to reduce the shorter side to 224 pixels, and then center
cropping the other dimension to create a 224x224 image.
Afterwards, the image is converted into a PyTorch tensor
of shape (3, 224, 224) and normalized, allowing for a sta-
ble distribution. Some examples of preprocessed images are
shown below:

2829.67

2571.78

2476.00

2435.60

2419.45 2416.83 2410.76

To save time during training, we decided to first pre-
process all of the data and push it back to Hugging Face
Hub, that way it could be directly streamed and used for
model training, instead of having to be preprocessed every
single time. For each split, we loaded the data into a Hug-
ging Face Dataset object and preprocessed them with the
OpenAl CLIP preprocess function. We flattened the tensors
into raw bytes, allowing them to be stored in the .arrow file
format. These files store one shard of the dataset, contain-
ing a batch of examples, which may include one or more
tensors as column values. Another option for data storage
would have been using Parquet files for more compression,
but we streamed the data later on, so we used Arrow IPC
files, which are larger, but more efficient for streaming.

4. Experiment
4.1. Auxiliary Experiments

In addition to our primary training runs, we conducted
a number of auxiliary experiments in order to better under-
stand training dynamics:

1. Neuron reinitialization. ~We wanted to determine
whether our neuron reinitialization strategy was func-
tioning, so we trained two models with identical pa-
rameters except one had reinitialization and the other
didn’t. Results were significant: the two different
models had a 0.1% difference in sparsity, while the
model trained with weight reinitialization had approxi-
mately 33% fewer features. Further training continued
to yield stronger results, ultimately reducing the dead
neuron count to 1200, an almost 80% reduction.

No reinitialization

6000

8 3000

2000

L0
B

R T s T
sparsity.

Reinitialization

3 2000

1000

T

2. Toy experiments with relating learning rate and LI.
Experiments with learning rate and regularization pa-
rameters revealed that both have crucial roles in ensur-
ing sparsity, and they impact one another. A low learn-
ing rate can cause the model to fail to develop sparse
representations, even with a very strong L1 regulariza-
tion; we believe that this is due to the fact that, with-
out a strong enough learning rate, the L1 regulariza-
tion does not have enough pressure to properly zero out
neurons, leaving them simply small rather than 0. Re-
ducing L1 regularization has a similar effect on train-
ing, as would be expected; with too low an L1 rate, the
model will fail to learn sparse representations.

3. Diversity in training data. We hypothesized that, be-
tween two datasets of the same size, one more diverse
than the other, that the more diverse dataset would
cause the SAE to use its capacity more and learn sparse
representations, and, on the other hand, that a dataset
without much diversity would not be engaging enough
of the model’s capacity to successfully learn sparse
representations, and would stay dense. Indeed, this
was empirically the case; switching from the same
number of images in CIFAR-10 to ImageNet-1k led
to superior qualitative results in interpretability.

4.2. Evaluating the ViT SAE

At the start of training, we began with similar hyperpa-
rameters to [6] to try to replicate their results. We explain
how we came up with each of our hyperparameters below.

1. Expansion Factor. From the results of [6], which used
an expansion factor of 64, we saw that 64 was more
than needed to capture important features for all im-
ages in the ImageNet-1k dataset. Since ImageNet-1k
is much smaller than the dataset used to train the Ope-
nAl CLIP models, [6] notes that an expansion factor
of 16 is sufficient to capture all the features and the

expressive capacity of the original model. We did test
larger expansion factors, like 32, but this led to more
dead neurons and did not improve results.

2. Learning Rate. We started with the learning rate from
[6], which was 0.0004. However, with this learning
rate the training was significantly overcorrecting in re-
sponse to noise and visually spiky, so we reduced the
learning rate down to 0.0001.

3. LI Strength. One metric that we focused on while
training was sparsity. Ideally, we wanted to lower our
average population sparsity as much as possible while
not having many dead neurons. We started with an L1
strength on the order of 1e-5, but quickly needed to in-
crease it significantly because it did not have enough
of an impact on the loss. We settled on about 0.4 to
0.6, which is notably significantly higher than the pre-
vious work we referenced, but which was nonetheless
the most effective range.

4. Batch Size. One other factor that we noticed with the
model was that it performed better with larger batch
sizes because a particular unit might not fire for cer-
tain inputs and batch sizes that are too small lead to
lots of variability and noise in p;. However, we were
unable to go beyond a batch size of 256 because do-
ing so led the HTTP streaming from Hugging Face to
timeout sometimes, interrupting the training. Thus, af-
ter doing another hyperparameter sweep, we ended up
with a batch size of 256.

5. Epochs. Since our training data was so large, we were
unable to optimize our hyperparameters for all of the
training data beyond one epoch due to time constraints.
As such, we trained our SAE for only one epoch. With
more time, training more epochs could decrease the
sparsity and improve performance overall.

4.3. ViT SAE Results

The metrics we used to evaluate the ViT SAE results
include population sparsity, plots of lifetime sparsity, and
qualitative analysis, with emphasis. We believe that our
model did not overfit on the training set, because our feature
visualizations are done with the validation set and our mod-
els continue to provide semantically meaningful features.

Our most interpretable ViT SAE had a population spar-
sity of 0.2, though other models reached as low as 0.002.
Although 0.2 was a bit higher than the expected ideal
value, later qualitative analysis showed that the model re-
constructed embeddings of the ViT well and tended to have
more meaningful than some more-sparse models we had
trained. A plot of the lifetime sparsities per hidden unit and
histogram of lifetime sparsities is shown below.

Lifetime Sparsity per Hidden Unit

SR T R AT

o 10000 12000

The lifetime sparsity per hidden unit does not have many
gaps, indicating that there are not many dead neurons and
neurons are actively firing on different inputs.

. L ol
i) 7 % = = 5 =
Log 10 Sparsity

The histogram further confirms the low number of dead
neurons, as the majority of neurons are clustered around a
sparsity of 0.1, with only a small count of dead neurons.
(Since this is log 10 sparsity, we added a small € to prevent
dead neurons from having values of —oo, thus why dead
neurons are clustered at exactly le — 8.) These results
indicate that the neurons of the SAE are learning features
well, as they are somewhat sparse and almost all neurons
are actively contributing on certain inputs.

As such, we then displayed the highest activation im-
ages for random neurons, showing the features that the SAE
learns. From the selected neurons, we can see different cate-
gories that they learn. These images are from the validation
split and each feature is shown below.

Act: 137 Act 135 Act: 133 Act 121

The neuron in the first row clearly learned a feature re-
lated to the shape and color of frogs. Many of the images in
the row are frogs, but one of them is a video game controller,

due to how the controller is shaped like a frog and has many
similar features, like its green buttons, which look like body
parts of the frog. In the next row, the neuron learned a fea-
ture related to drums, leading to all of the displayed images
being drums or drumsets. The last category that is displayed
is different types of insects. There are various kinds of fly-
ing insects like butterflies, but also ones without wings, like
the praying mantis. This elucidates some kind of common
feature between these images, which could be related to
the green background, insect body shape, etc. Other than
these specific categories, there are many more features that
were learned by other neurons as well, highlighting how
well the ViT SAE was able to capture different high level
features in single neurons. By analyzing these categories,
more correlations between certain types of images can be
discovered and more understanding of the features the ViT
actually learns can be gained.

4.4. ResNet SAE

Since we wanted to compare the features learned by the
ViT SAE and ResNet SAE, we decided to use the same hy-
perparameters to ensure that they were trained in the same
way.

4.5. ResNet SAE Results

The ResNet SAE had a population sparsity of 0.02. Al-
though this seems low, the lifetime sparsity plot explains
why this is not accurate. The lifetime activations for each
neuron are shown below.

Lifetime Sparsity per Hidden Unit

arsity (Fraction Inac

Lifetime sp

o 2500 5000 7500 10000 12500 15000
Hidden Unit Index

The lifetime sparsity per hidden unit looks similarly dis-
tributed to the distribution of the ViT SAE, but with more
blank areas. This indicates that some hidden units are not
firing at all, leading to a very low sparsity because many
neurons are dead.

12000
10000
8000
& oo

4000

2000 ‘

B Rk T s B
Log10 Sparsity.

A histogram of the logl0 sparsity further confirms the
problem with dead neurons, as the majority of the neurons
are not firing at all. From these plots, it is clear that the

ResNet SAE suffered a lot more from dead neurons than
the ViT model using the same hyperparameters. This could
suggest the ResNet embeddings are easier to reconstruct
and less neurons are actually needed for each input, mean-
ing that most neurons are unnecessary and end up dead
due to the L1 penalty. Other factors like the different input
dimensions and therefore different hidden layer dimensions
may have also played a role in the ResNet suffering more
from dead neurons.

Afterwards, we also displayed the highest activation im-
ages for random neurons, showing the features that the SAE
learns. From the selected neurons, we can see different cate-
gories that they learn. These images are from the validation
split and each feature is shown below.

The neuron in the first row clearly learned a feature re-
lated to yellow, circular objects, demonstrated by the yel-
low fruits, corn, coral, and volleyball. Another category is
shown by the next row, in which the neuron clearly learned a
feature related to male human faces, as all of the images are
portraits of men. Furthermore, it seems like the neuron be-
low learned a feature related to engineering and technology,
as the images show a rocket, phones, computer, and NASA,
albeit one extraneous image that has nothing to do with
technology. With more reduction in dead neurons, more
categories could be formed, but these results demonstrate
how the firing neurons are working to represent the features
that the ResNet is learning. We did notice that some neu-
rons fired on images that did not form categories, but this
is due to how many neurons are dead, leading to their high-
est activation scores to not be very meaningful. However,
the amount of neurons that represent key abstract features
still demonstrates that the ResNet SAE captured many key
concepts from the later layers of the ResNet.

Rank 2: ViT-feature 9747 (corr=0.880)

4.6. Comparison Results TS oages et st i e

To compare the SAEs for the ViT and ResNet models,
we used a Pearson correlation score to find the most cor-
related neurons for a particular set of images, creating a 2 et 10 cr 00
one-to-one neuron mapping between the ViT SAE and the o3 it e

ResNet SAE. Pearson correlation is defined by the formula \ -

~

.

n
S (Xi- %) (v~ 7)
=1
XY
n n Rank 3: ViT-feature 3097 (corr=0.853)
— 2 — 2 Top 5 images that activate this feature
S (- %) [- T)
i=1 =1

, which in this context, measures how similarly two neu- o
rons fire on a set of images. We calculated this coefficient Top 3 mages tht actate this eature
by first normalizing the activations from each of the SAE :
models on a validation set of images and then doing matrix
multiplication to obtain the Pearson correlation coefficient
matrix. Using this matrix, we filter out dead neurons (which
would have a correlation of 1, since they always do not fire), o e 23 0320
and then search for the neurons that have the highest corre-

lation. Below are some of the mappings and correlations
between the mapped neurons, where max_diff is simply a
measure of the largest difference in the activations of the] Rk st et 12 =00
neuron in the ViT SAE and the neuron in the ResNet SAE.

Top-18 non-trivial matches (j, k, corr, max diff):

ViT-feat 625 ResNet-feat 10195, corr=0.9286, max_diff=7.2847e+00
ViT-feat 9747 ResNet-feat 671@, corr=0.8803, max_diff=1.8777e+00
ViT-feat 3897 ResNet-feat 1526, corr=0.8527, max_diff=8.8758e-081
ViT-feat 323482 Reshet-feat 9312, corr=0.8391, max_diff=5.9245e+00
ViT-feat 8241 ResNet-feat 13421, corr=0.8368, max_diff=9.2760e-01
ViT-feat 3174 « ResNet-feat 3803, corr=8.8388, max diff=2.7847e+00) e)
ViT-feat 5198 ResNet-feat 8873, corr=0.8256, max_diff=1.5728e+00

ViT-feat 9888 ResNet-feat 13372, corr=0.8248, max_diff=1.2076e+80
ViT-feat 9875 ResNet-feat 10888, corr=0.8217, max_diff=1.2931e+80
ViT-feat 1127 ResNet-feat 5568, corr=0.8199, max_diff=5.8715e+80

» roE T WY

0+ 3 OF OF O3

Rank 5: Resnet-feature 13421 (corr=0.831)
Top 5 images that activate this feature

Using these mappings, we displayed the images that each
of the neuron pairs had the highest activations on and no-
ticed that both the ViT and ResNet SAEs were learning sim-
ilar features in many of their neurons.

Rank 1: ViT-feature 625 (corr=0.929)
Top 5 images that activate this feature

Rank 1: Resnet-feature 10195 (corr=0.929)
Top 5 images that activate this feature

From these images that each mapped ViT and ResNet

SAE neuron had the highest activation scores on, we noticed

that the mapped neurons were firing on similar or even the

same images. For the most correlated neurons, they both

\ had the highest activation scores for dog images and the
highest activating image for the ViT neuron was the fifth
highest activating image for the ResNet neuron. A similar
phenomenon is shown by the fourth most correlated neu-
rons, as they share many images of bugs and insects. The

other most correlated neurons do have some overlapping
images but do not appear to have any clear feature that they
have learned, which is largely due to how the ResNet model
had many dead neurons, leading to some neurons that did
not actually capture a specific category. However, these re-
sults indicate that the ViT and ResNet SAEs are learning
very similar features, as they have matching neurons for

images in the same category. Thus, this confirms our hy-
pothesis that the later layers of the OpenAl CLIP ViT and
ResNet do share many common learned features.

5. Conclusion

In summary, our hypothesis that we would find similar
features across the ViT and the ResNet was weakly vali-
dated: we did often find non-trivially, semantically-aligned
features across the ResNet and the ViT, such as the insects
feature in the previous figure. This occurs even with a fairly
poor-performing ResNet SAE, offering a positive direction
for future results. An additional point of interest is that
sparse autoencoders are clearly capable of undoing super-
position in both the ViT and the ResNet, though parameter
scales vary wildly; matching parameter values for the ViT
SAE led to a poor-performing ResNet SAE, indicating that
training dynamics are different in this aspect. This causes
us to suspect that ResNet features may be meaningfully dif-
ferent in some important sense we could not identify, and
future work might explore the cause of differences in train-
ing dynamics between the ViT and the ResNet SAEs.

Future work could also explore more advanced SAE
training techniques, such as neuron resampling (we imple-
mented neuron reinitialization, which was somewhat but not
tremendously effective) in order to achieve even stronger
and consistently interpretable results.

6. Contributions and Acknowledgments

In terms of data, F.Z. preprocessed the ImageNet-1k data
and set up the HuggingFace Hub repository. He also imple-
mented the different sparsity metrics, as well as the cor-
relation scores and top images between matching pairs of
neurons between the ViT SAE and ResNet SAE. Other than
that, he trained the ResNet SAE using the same training
loop as the ViT SAE.

L.G. set up the SAE and the hooks for each specific
model. He wrote the code for streaming the data from Hug-
gingFace Hub, as well as the training loop for the ViT SAE,
and trained it by performing many hyperparameter sweeps.
He also plotted the histograms for sparsity and the top acti-
vating images for specified neurons.

As a group, we both analyzed our qualitative results and
wrote this paper together.

We thank the developers of PyTorch [10] and the OpenAl
team who pretrained the CLIP model [11], and the creators
of the python Datasets library. [8]

References

[1] Steering clip’s vision transformer with sparse autoencoders.

[2] Emergence of simple-cell receptive field properties by learn-
ing a sparse code for natural images, 1996.

(3]
(4]
(5]
(6]

(7]

8]

(9]

(10]

(11]

(12]

Learning transferable visual models from natural language
supervision, 2021.

Scaling monosemanticity: Extracting interpretable features
from claude 3 sonnet, 2024.

Sparse autoencoders find highly interpretable features in lan-
guage models, 2024.

Towards multimodal interpretability: Learning sparse inter-
pretable features in vision transformers, 2024.

Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S.
Corrado, J. Dean, and A. Y. Ng. Building high-level features
using large scale unsupervised learning, 2012.

Q. Lhoest, A. Villanova del Moral, Y. Jernite, A. Thakur,
P. von Platen, S. Patil, J. Chaumond, M. Drame, J. Plu,
L. Tunstall, J. Davison, M. éaéko, G. Chhablani, B. Ma-
lik, S. Brandeis, T. Le Scao, V. Sanh, C. Xu, N. Patry,
A. McMillan-Major, P. Schmid, S. Gugger, C. Delangue,
T. Matussiere, L. Debut, S. Bekman, P. Cistac, T. Goehringer,
V. Mustar, F. Lagunas, A. M. Rush, and T. Wolf. Datasets:
A community library for natural language processing, 2021.
C.O.N.S. T.H.S.K.Z.H-D.R.L.D.D.C.C.R.G. S. M.
J. K. D. A. M. W. C. O. Nelson Elhage, Tristan Hume. Toy
models of superposition, 2022.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable visual
models from natural language supervision, Jul 2021.
JJBBB.C.AJLTC.NLTC. A CD A ARLY.
WS KNSTMNILATKNBMIEBT
H. S. C. T. H. C. O. Trenton Bricken*, Adly Templeton*.
Towards monosemanticity: Decomposing language models
with dictionary learning, 2023.

